Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats.

نویسندگان

  • M R Akilesh
  • M Kamper
  • A Li
  • E E Nattie
چکیده

In anesthetized rats, unilateral retrotrapezoid nucleus (RTN) lesions markedly decreased baseline phrenic activity and the response to CO2 (E. E. Nattie and A. Li. Respir. Physiol. 97:63-77, 1994). Here we evaluate the effects of such lesions on resting breathing and on the response to hypercapnia and hypoxia in unanesthetized awake rats. We made unilateral injections [24 +/- 7 (SE) nl] of ibotenic acid (IA; 50 mM), an excitatory amino acid neurotoxin, in the RTN region (n = 7) located by stereotaxic coordinates and by field potentials induced by facial nerve stimulation. Controls (n = 6) received RTN injections (80 +/- 30 nl) of mock cerebrospinal fluid. A second control consisted of four animals with IA injections (24 +/- 12 nl) outside the RTN region. Injected fluorescent beads allowed anatomic identification of lesion location. Using whole body plethysmography, we measured ventilation in the awake state during room air, 7% CO2 in air, and 10% O2 breathing before and for 3 wk after the RTN injections. There was no statistically significant effect of the IA injections on resting room air breathing in the lesion group compared with the control groups. We observed no apnea. The response to 7% CO2 in the lesion group compared with the control groups was significantly decreased, by 39% on average, for the final portion of the 3-wk study period. There was no lesion effect on the ventilatory response to 10% O2. In this unanesthetized model, other areas suppressed by anesthesia, e.g., the reticular activating system, hypothalamus, and perhaps the contralateral RTN, may provide tonic input to the respiratory centers that counters the loss of RTN activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscimol dialysis in the retrotrapezoid nucleus region inhibits breathing in the awake rat.

Under anesthesia, inactivation of the retrotrapezoid nucleus (RTN) region markedly inhibits breathing and chemoreception. In conscious rats, we dialyzed muscimol for 30 min to inhibit neurons of the RTN region reversibly. Dialysis of artificial cerebrospinal fluid had no effect. Muscimol (1 or 10 mM) significantly decreased tidal volume (VT) (by 16-17%) within 15 min. VT remained decreased for ...

متن کامل

Brain stem lesion size determined by DEAD red or conjugation of neurotoxin to fluorescent beads.

Neurotoxin microinjected into the retrotrapezoid nucleus of anesthetized rats decreases phrenic activity and eliminates the response to CO2. In unanesthetized rats, such treatment has no effect on awake, resting breathing and decreases CO2 sensitivity by 40% (M. Akilesh, M. Kamper, A. Li, and E. E. Nattie. J. Appl. Physiol. 82: 469-479, 1997). One important factor in explaining these disparate ...

متن کامل

Optogenetic stimulation of c1 and retrotrapezoid nucleus neurons causes sleep state-dependent cardiorespiratory stimulation and arousal in rats.

C1 catecholaminergic neurons and neurons of the retrotrapezoid nucleus are integrative nodes within the brain stem network regulating cardiorespiratory reflexes elicited by hypoxia and hypercapnia, stimuli that also produce arousal from sleep. In the present study, Channelrhodopsin-2 was selectively introduced into these neurons with a lentiviral vector to determine whether their selective acti...

متن کامل

α1- and α2-adrenergic receptors in the retrotrapezoid nucleus differentially regulate breathing in anesthetized adult rats.

Norepinephrine (NE) is a potent modulator of breathing that can increase/decrease respiratory activity by α1-/α2-adrenergic receptor (AR) activation, respectively. The retrotrapezoid nucleus (RTN) is known to contribute to central chemoreception, inspiration, and active expiration. Here we investigate the sources of catecholaminergic inputs to the RTN and identify respiratory effects produced b...

متن کامل

Selective optogenetic stimulation of the retrotrapezoid nucleus in sleeping rats activates breathing without changing blood pressure or causing arousal or sighs.

Combined optogenetic activation of the retrotrapezoid nucleus (RTN; a CO2/proton-activated brainstem nucleus) with nearby catecholaminergic neurons (C1 and A5), or selective C1 neuron stimulation, increases blood pressure (BP) and breathing, causes arousal from non-rapid eye movement (non-REM) sleep, and triggers sighs. Here we wished to determine which of these physiological responses are elic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 82 2  شماره 

صفحات  -

تاریخ انتشار 1997